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Westudy the correspondence between analytical and empirical slow-flowanalyses.Given a sufficiently dense set of

sensors, measured time series recorded throughout a mechanical or structural system contains all information

regarding the dynamics of that system. Empiricalmode decomposition is a useful tool for decomposing themeasured

time series in terms of intrinsic mode functions, which are oscillatory modes embedded in the data that fully

reproduce the time series. The equivalence of responses of the analytical slow-flowmodels and the dominant intrinsic

mode functions derived from empirical mode decomposition provides a physics-based theoretical foundation for

empirical mode decomposition, which currently is performed formally in an ad hoc fashion. To demonstrate

correspondence between analytical and empirical slow flows, we derive appropriate mathematical expressions

governing the empirical slow flows and based on analyticity conditions. Several nonlinear dynamical systems are

considered to demonstrate this correspondence, and the agreement between the analytical and empirical slow

dynamics proves the assertion.

I. Introduction

S IGNAL processing is concerned with the mathematical repre-
sentation of a signal and the algorithmic operations performed

on it to extract the information it carries. The method of information
extraction depends on the type of signal and the nature of the
information being carried by it [1].

There are numerous signal-processing techniques to decompose a
signal into a set of simple intrinsic oscillators, among which the so-
called empirical mode decomposition (EMD) is the simplest. The
objective of this study is not only to demonstrate improvement of the
EMD method itself by using masking and mirror-image signals,
but also to establish the physical meaning of the decomposed
intrinsic oscillators by means of an analytical tool based on the
complexification-averaging technique. This will provide a physics-
based theoretical foundation for EMD.

Slow-flow dynamics is a useful tool for understanding the major
features of a (nonlinear) dynamical system. The slow-flowmodel for
a dynamical process is derived by introducing a slow/fast partition of
the dynamicswhereby the nonessential fast dynamics is averaged out
to reveal the important slow-flow modulations of amplitudes and
phases. To extract slowly varying system quantities, numerous per-
turbation tools have been developed. Examples are the method of

direct series expansion (e.g., the Linstedt method), the method of
multiple scales, the harmonic balance method [2], the averaging
theorem [3], and others. Focusing more on transient dynamical
phenomena, the complexification-averaging technique [4,5] recently
has received much attention due to its capacity to provide slow-
flow models even for strongly nonlinear dynamical interactions; for
example, of resonance capture phenomena in coupled oscillators
with essentially nonlinear attachments [6,7]. In the limit of very
lightweight nonlinear attachments, the idea of singular perturbations
[8] can be employed for partitioning the dynamics into slow and fast
time scales.

In analyzing a time series obtained from measurements or
numerical simulations, potential problems include short total data
span, nonstationarity, and nonlinearity of the data. Fourier spectral
analysis, which is probably the most popular signal analysis tool,
assumes linearity and stationarity in the data and exhibits spurious
harmonic components even for a pure harmonic signal. This spuri-
ous feature of time-frequency analysis yields a misleading energy-
frequency distribution.

Thewavelet transform,which is a popular time-frequency analysis
tool, involves a windowing technique with variable-sized regions so
that it performs a multiresolution analysis; small time intervals are
considered for high-frequency components, whereas the size of the
interval is increased for lower-frequency components, thereby giving
better time and frequency resolutions than the Fourier analysis [9].
Nonetheless, the wavelet analysis is not free of misleading energy-
frequency distribution because, in essence, it is still based upon
Fourier analysis. In this section, we discuss how the use of EMD can
overcome such drawbacks in time-frequency analysis.

Because the EMD (or standard EMD) of time series was
introduced byHuang et al. [10–12], numerous applications of it have
been examined; for example, in system identification problems [13–
15], damage detection, and health monitoring [16–20]. The motiva-
tion for performing EMD is to decompose nonstationary and non-
linear data into a set of simple and intrinsic oscillations at the
characteristic time scales of the dynamics in an ad hoc manner
requiring no a priori system information. Such decomposition based
on the local characteristic time scale of the data is adaptive and highly
efficient so that it becomes suitable for nonlinear and nonstationary
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processes. Thus, application of EMD to a given time series yields a
set of the so-called intrinsic mode functions (IMFs), and this set of
IMFs forms a complete and almost orthogonal basis for the time
series [10].

However, as has been addressed inmany studies (see, for example,
Chen and Feng [21], Flandrin et al. [22], Peng et al. [23], Yang [24],
andWu and Huang [25]), there exist some limitations in the standard
EMD analysis, such as lack of orthogonality (or spuriousness of the
resulting IMFs) and difficulties in decomposing closely spaced
modes. To overcome such drawbacks of the standard EMD, many
supplementary techniques have been investigated. Yang [24] used an
adaptive bandpass filter for preprocessing before applying EMD.
Peng et al. [23] improved EMD with the help of the wavelet packet
transform as a preprocessor to decompose a signal into a set of
narrowband signals before applying EMD. Chen and Feng [21]
studied the decomposition of narrowband signals based on wave
beating phenomena. Similarly, Senroy et al. [26] implementedmask-
ing signals [27] based on fast Fourier transforms to separate com-
ponents with closely spaced frequencies; the decomposition was
compared with the results obtained by the S-transform, which is a
phase-corrected wavelet transform. Flandrin et al. [22] examined
EMD as a dyadic filter bank resembling those involved in wavelet
decompositions, and then Wu and Huang [25] developed an ensem-
ble EMD consisting of sifting an ensemble of white noise-added
signals and treating the mean as the final result.

Several efforts were recently made to use the IMFs for slow-flow
model identification [28,29]. The proposed method was applied to
characterize and estimate system parameters for a mathematical
model or an experimental multidegree-of-freedom coupled oscil-
lator. We expand this idea in this work to establish an analytical
equivalence between analytical and empirical slow-flow analyses.
For this purpose, the analytical method for deriving a slow-flow
model using the method of complexification averaging (CX-A), and
an enhanced version of EMD, are discussed in Sec. II and III
respectively. In particular, the enhanced EMD method makes use of
masking signals to greatly enhance the frequency resolution of the
decomposition, as well as mirror-image signals that nullify the end
effects while having no other influences on the transformation of the
original time series. In Sec. IV, the analyticity properties of the IMFs
are investigated and certain relevant examples are discussed in
Sec. V. The equivalence between the analytical and empirical slow-
flow analyses discussed in this paper form the theoretical foundation
for a new nonparametric nonlinear system identification method,
which is further investigated in another paper [30].

II. Slow-Flow Model by Complexification Averaging

As a preliminary example of a slow-flow model we consider a
simple pendulum with slowly varying length, approximated as the
Duffing equation with time-varying coefficients [31],

d

dt
�l2��� _u�t�� � gl���u�t� � �

6
gl���u3�t� � 0 (1)

where �_� � d= dt, and � � �t��� 1� is a slow-time scale. The
slowly varying amplitude a��� and frequency !��� of the pendulum
can be approximated as [31]
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Figure 1 depicts a typical response when l��� � l�0��1� � sin ��,
�� 0:15, l�0� � 10, anda�0� � 1. The simple pendulumof constant
length (i.e., l��� � l0 � constant) will exhibit a periodic motion
with constant amplitude a�0� and constant (fast) frequency !0����������
g=l0

p
�1� �a�0�2=16�. On the other hand, the pendulum with time-

varying length will possess a time-varying amplitude a��� and time-
varying frequency !���. Its response can then be expressed as
u�t� 	 a��� exp�j!���� � a��� exp�!0t� �����, where the slowly
varying phase is computed by the expression

���� � ��a�0�2=16
Z
�

0

�������������
g=l�s�

p
�l�0�=l�s��ds

The amplitude modulations then represent the slow oscillation
a��� exp�j�����, and the important dynamics are captured by this
slow oscillation rather than by the fast oscillation exp�j!0t� where
j2 ��1.

For generalization of this idea, we consider an n-degree-of-
freedom (DOF) nonlinear dynamical system in the general form,

_X� f�X; t�; X� fxT _xT gT 2 R2n; t 2 R (3)

where x and _x are the displacement and velocity vectors,
respectively. To establish an analytical slow-flow model for this
system, we employ the CX-A technique [4,5], which is briefly
discussed here.

Assume that the dynamics of interest contains N distinct compo-
nents at frequencies, !1; !2; . . . ; !N , so that the response at each
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Fig. 1 Slow and fast components of the simple pendulum [Eq. (1)].
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DOF of the system can be expressed as the sum of N independent
components

xk�t� � x�1�k �t� � x
�2�
k �t� � 
 
 
 � x

�N�
k �t�; k� 1; 2; . . . ; n (4)

where x�m�k �t�, m� 1; 2; . . . ; N, indicates the component of the
response of the kth coordinate associatedwith frequency!m, with the
ordering !1 < !2 < 
 
 
< !N .

It turns out that even strongly nonlinear dynamical processes can
be analyzed by an analytical technique termedCX-A,first introduced
by Manevitch [5] (for an extensive discussion of this technique and
numerous applications refer to Vakakis et al. [32]). In particular, for
each frequency component in (4) we introduce a new complex
variable defined by

 �m�k �t� � _x�m�k �t� � j!mx
�m�
k �t�≜ ’�m�k �t�ej!mt (5)

where ’�m�k �t� 2 C, k� 1; . . . ; n, and ej!mt represent the slow and
fast components, respectively, of themth fast-frequency component
of the response of the kth coordinate. It is clear that the real dependent
variables and their time derivatives can be expressed in terms of the
new complex variables as

x�m�k �t� �
1

2j!m
� �m�k �t� �  

�m��
k �t��

_x�m�k �t� �
1

2
� �m�k �t� �  

�m��
k �t�� (6)

where ��� denotes complex conjugate.
In the presence of multiple frequency components, the method

of multiphase averaging [33] can be used to perform fast–slow
partitioning of the dynamics. Substituting into Eq. (3), and averaging
out the fast-frequency components other than ej!mt,m� 1; 2; . . . ; N,
we obtain the slow-flow model in the form

_� k � Fk��k�; �k 2 CN (7)

where�k � f’�1�k ; ’
�2�
k ; . . . ; ’

�N�
k gT , k� 1; 2; . . . ; n. We note that the

dimension N of this slow-flow model may exceed the number of
degrees of freedom of the original dynamical system, because the
number of fast frequencies is what determines its dimensionality.
There are numerous papers that use this method (see, for example,
Vakakis andGendelman [7] and others [34–36]), and some examples
will be discussed in Sec. V.

III. Empirical Mode Decomposition

A. Standard Empirical Mode Decomposition Method

The motivation for the EMD is to decompose a nonstationary and
nonlinear time series into a set of intrinsic oscillatory functions at
different time scales of the dynamics in an ad hoc manner requiring
no a priori system information. Such decomposition based on the
local characteristic time scales of the data is adaptive and highly
efficient, so it becomes suitable for nonlinear and nonstationary
processes. Thus, application of the EMD to a given time series yields
a set of so-called IMFs, which form a complete and almost orthog-
onal basis for the time series [10].

In order for a function c�t� to be considered an IMF, it must satisfy
the following two basic properties: 1) it must possess exactly one
zero between any two consecutive local extrema; and 2) it must have
zero local mean. A function that satisfies only condition 1 is called a
weak IMF. A complete characterization of weak IMFs can be
performed in terms of solutions of self-adjoint ordinary differential
equations, which usually arise from mechanical vibration problems;
moreover, any modification of the definition of an IMF must neces-
sarily include the condition 1 for a weak IMF [37].

The main loop of the algorithm for extracting the IMFs of a signal
x�t� (i.e., the standard EMD procedure) is summarized as follows
[10,38]: 1) identify all extrema of x�t�; 2) perform (spline-) inter-
polations betweenminima (maxima), resulting in an envelopeemin�t�
[(emax�t�)]; 3) compute the average R�t� � �emin�t� � emax�t��=2

(considered as a residual); 4) extract the detail c�t� � x�t� � R�t�;
and 5) iterate on the residual R�t�. In practice, the EMD procedure is
refined by a sifting process, and the inner loop that iterates 1–4 on the
detail c�t� runs until the average R�t� can be considered zero-mean
under some tolerance (i.e., as a stopping criterion). Once achieved,
the detail c�t� is regarded as the effective IMF. This procedurewill be
hereafter called the standard EMD method (SEMD).

Suppose that the response of the kth DOF of a discrete dynamical
system, xk�t�, can be decomposed into N components (i.e., N
dominant IMFs) resulting in the decomposition

xk�t� 	 c�k�1 �t� � c
�k�
2 �t� � 
 
 
 � c

�k�
N �t�; k� 1; 2; . . . ; n (8)

where the residual is neglected and c�k�m �t�, m� 1; 2; . . . ; N,
indicates the component associated with the dominant frequency!m.
By construction the application of EMD yields IMFs sequentially
from higher to lower frequency components, so that a formal
multiscale decomposition of the dynamics is performed. Moreover,
we adopt notation similar to that used in Sec. II; that is, that the IMF
with the larger subscript is the higher-frequency component. This
convention will be useful when considering the equivalence of the
analytical and empirical slow flows in Sec. IV.

To check the orthogonality of the IMFs used in the decomposition
of the signal (8) we compute its square,

x2k�t� 	
XN
i�1
�c�k�i �t��2 � 2

XN
m�1

XN
l�1

c�k�l �t�c
�k�
m �t� (9)

Then, the overall index of orthogonality [10] for the decomposition
(8) is defined by considering the relative magnitudes of the cross
terms in the second part of (9).

IO k ≜
XT
t�0

�XN
m�1

XN
l�1

c�k�l �t�c
�k�
m �t�=x2k�t�

�
(10)

If the decomposition yields completely orthogonal IMFs or if the
signal is an IMF itself, then the index of orthogonality should be zero.
Moreover, the closer index of orthogonality is to zero, the better the
orthogonality between the IMFs is. The quantification of the degree
of orthogonality between IMFs provided by the index (10) paves the
way for optimizing the extracted basis of IMFs to ensure mini-
mization of the orthogonality index. In view of the well-known
nonuniqueness of EMD results, the basis of IMFs corresponding to
the least value of index of orthogonality (typically, on the order of
10�3) in this study will be regarded as forming a reasonably
orthogonal basis for the signal.

As a demonstration, the SEMDanalysis is performed on the signal

x�t� � A1 sin 2�f1t� A2 sin 2�f2t� A3 sin 2�f3t

, where A1 � 1, A2 � 0:5, A3 � 0:7 and f1 � 1, f2 � 3f1,
f3 � 5f1 �Hz�.∗∗ The left column of Fig. 2 presents the schematic
of the SEMDprocedure, where the exact decomposition should yield
ci�t� � Ai sin�2�fit�, i� 1, 2, 3. The gray lines indicate the original
signal and the residual obtained at each step; the black lines represent
the extracted components as the mean of local extrema, sequentially
obtained from the higher- to lower-order harmonics (i.e., from f3 to
f1). The squares (circles) are the local minima (maxima), and the
dashed lines represent the spline interpolations through those local
maxima and minima, respectively. To study the frequencies of the
computed IMFs, the wavelet transform spectrum of each IMF is
plotted on the right column of Fig. 2, where the Matlab codes
developed by Dr. V. Lenaerts (Université de Liège, Belgium) in
collaboration with Dr. P. Argoul (Ecole Nationale des Ponts et
Chaussées, France) were used, and the Morlet wavelet, which is a
Gaussian-windowed complex sinusoid, is considered as the mother
wavelet here (see, for example, Argoul and Le [39,40]).

∗∗The time steps used in this study are�t� 0:01 and�t� 0:1 �s� in this
section and Sec. V, respectively.

2940 LEE ETAL.



It is clear that the SEMD can extract the three distinct frequency
components (which are well-spaced from each other) and the
envelopes of the amplitudes from the original signal, which is simply
a linear combination of harmonics. The end effects in the initial
period (due to the Gibbs phenomenon; also known as ringing
artifacts), as in other time-frequency analyses, are prominent in the
interval Z in Fig. 2. These end effects appear in the form of
overshoots, which is a consequence of trying to approximate a
discontinuous function with a partial (i.e., finite) sum of continuous
functions; in addition, there exist numerical artifacts due to the
computational Hilbert transform, and also those caused by spline
interpolation during the sifting process (see, for example, Delechelle
et al. [41]).

In spite of the nice decomposition in the previous demonstration,
the SEMD method is often incapable of generating a set of proper
IMFs. By a proper IMF we mean an IMF that is monocomponent or
narrowband so that it becomes suitable forHilbert transformation. As
mentioned previously, SEMD does not provide a unique decompo-
sition of a signal and strongly depends on a free stopping parameter;
that is, the decomposition is not robust in practice, particularly when
the signal is the output of a strongly nonlinear transient dynamical
process. Furthermore, it fails to extract high-frequency components
hidden in a signal containing inflectionlike points (see the discussion
in Sec. III.B).

When a set of IMFs is considered as a basis for decomposing a
signal (time series), it should be examined in terms of completeness
and orthogonality. Completeness is guaranteed by virtue of the
decomposition, and can be verified by reconstructing the original
signal as the sum of all IMFs. However, spuriousness of the IMFs
cannot be avoided in many applications, which in turn is a conse-
quence of the fact that the resulting IMFs form (in general) a non-
orthogonal basis. Huang et al. [10] argued that locality and adaptivity
are the necessary conditions for an IMF basis for expanding non-
linear and nonstationary time series, whereas orthogonality is not a
necessary criterion for the basis selection, restricting its requirement
only to linear decomposition systems.

Despite this argument, we believe that multifrequency compo-
nents (or mode-mixing) in an IMF prevents a proper understanding
of nonstationary nonlinear dynamical processes, so orthogonality (or
near orthogonality) should be a crucial factor for a set of IMFs, as this
would minimize spuriousness of the basis and contribute toward a
physics-based foundation of EMD. This can be performed by

selecting the IMF basis corresponding to a minimal index of orthog-
onality (typically,O�10�3�), so this will be the selected criterion for
improving EMD in this study. This will require an enhancement of
the EMD procedure through the use of masking and mirror-image
signals, leading to an advanced EMD (AEMD) method as described
in the next section.

B. The Advanced Empirical Mode Decomposition Method

To overcome the aforementioned drawbacks of the standard EMD,
many supplementary techniques have been investigated [21–25].
Although the improvement methods for EMD performance employ
similar principles, in this study we adopt the use of masking signals
with the Matlab codes developed by Rilling et al. [38]. Furthermore,
we employ mirror-image signals in our time-frequency analysis to
nullify the numerical artifacts in the initial transients of the signal
reconstruction. To make a distinction from the standard EMD,
our suggested enhanced method will be referred to as the AEMD
method. One of the main objectives of the AEMD is to generate a set
of IMFs that are monocomponent or narrowband and form an almost
orthogonal basis for the signal.

1. Narrowbandedness of an Intrinsic Mode Function

By definition, a proper IMF should be monocomponent or
narrowband. A truly monocomponent signal can be represented as
ej!mt with a constant amplitude, whereas a narrowband IMF is a
signal with slow amplitude modulations whose dominant frequen-
cies liewithin a certain bandwidth. As discussed in theAppendix, the
narrowbandedness of a signal is defined by the ratio of its dominant
frequencies; in practical terms, when this ratio lies roughly within
[0.5, 2], the signal may be said to be narrowband. EMD analysis will
suffer difficulties in decomposing these frequency components, even
if they are clearly distinct. This is the case not only for the SEMD, but
also for our suggested AEMD as well. The issue of analyzing and
modeling signals with closely spaced modes will be left for future
work, and herein we will be concerned only with time series that
possess distinct dominant frequencies.

2. Expansion with Mirror-Image Signals

The idea of expanding a time series by adding to it its mirror image
is due to the observation that the numerical artifacts in decomposition
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k�1 Ak sin�2�fkt�, whereA1 � 1,A2 � 0:5,A3 � 0:7, and f1 � 1, f2 � 3, f3 � 5 �Hz�: IMFs from theEMD

analysis, and corresponding wavelet transform spectra; in the interval Z end effects occur due to the Gibbs phenomenon during interpolation.
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and time-frequency analysis become prominent only near the initial
and final time intervals of the time window considered (hence, they
are called end effects). Such end effects in the initial period of the
reconstruction of a time series might blur interpretation of interesting
dynamical phenomena occurring during the initial transients. In
addition, they might interfere with the determination of the proper
initial conditions for a multiphase-averaged system based on the
equivalence between the analytical and empirical slow flows (see
Sec. IV for more discussion).

Denote the original time series by x�t�, t 2 �0; tf�; then its mirror-
image signal is defined by xmirror�t�, t 2 ��tf; 0�, and the expanded
signal, by x̂�t� � f xmirror�t�; x�t� gT, t 2 ��tf; tf�. A rule of thumb
for an expansion with a mirror-image signal is that the mirror image
must preserve smoothness in the instantaneous frequency of the
expanded signal at the symmetry point so that the expanded signal is
continuously differentiable at that point (i.e., x̂�t� 2 C1 for t 2
�0�; 0��). Themost convenient symmetry iswhen an even expansion
xmirror�t� � x��t� is selected, when _x�t�jt�0� � 0; otherwise an odd

expansion xmirror�t� � �x��t� is considered.
In practice, we apply the following condition for a mirror-image

signal

xmirror�t� �
�
x��t�; for j _x�t�jt�0� < �
�x��t�; otherwise

(11)

where � is a small positive number. The evaluation of the derivative at
t� 0� is subject to the usual numerical difficulties, and care must be
taken to use a small step size, filter high-frequency noise, and so forth
in its computation.

Once all the calculations (such as wavelet or Hilbert trans-
formations or empirical decompositions) have been performed, the
portion of the time series corresponding to the mirror-image signal is
discarded from the final result.

As a demonstration time-frequency analyses of x�t� � sin�6�t�
and x�t� � cos�6�t� are presented in Figs. 3a and 3b, respectively.
Because the sine function is odd (i.e., symmetric with respect to the
origin; x�t� � �x��t�), it is natural to complement it with its mirror-
image signal by performing an odd expansion. In Fig. 3a the use-
fulness of adding the mirror-image signal is clear from the absence
of numerical artifacts in the wavelet transform spectrum of the
expanded signal.

On the other hand, the cosine function requires a mirror-image
signal created by even expansion due to the symmetry of the original
signal with respect to t� 0; i.e., x�t� � x��t�. In Fig. 3b, thewavelet
transform spectra of odd- and even-expanded functions are
compared for this case. Whereas the odd expansion yields serious
numerical artifacts present over the entire time domain as very low-
frequency components, the even expansion completely nullifies the
end effects even during the initial period of the wavelet spectrum.

If necessary, the expansion with a mirror-image signal can also be
applied at the end time interval to obtain clean time-frequency
behavior over the entire time domain. However, in this work we will
restrict application of a mirror-image signal to only the initial regime
of the response because in many applications the early-time intervals
are the most highly energetic, and so it is in these intervals where
strongly nonlinear dynamical effects take place. Moreover, a mirror-
image signal can be applied not only for time-frequency analysis, but
also for EMD analysis. The need for employing mirror-signal
techniques in EMD is dictated by the requirement that, by con-
struction, the sum of initial conditions of all (dominant) IMFs of the
signal should be equal to, or at least nearly equal to, the initial
conditions of the original time series. That is, the decomposition of
the kth DOF response should satisfy the relationship

xk�0� 	
Xne
m�1

c�k�m �0�

where ne � N is the number of dominant IMFs.

3. Using Masking Signals

The use of amasking signal in EMD resulted from the problems of
intermittency, mode mixing, or closely spaced modes [26,27].
Although there are still certain limitations in decomposing closely
spaced modes even with the AEMD method (cf. Appendix), we
restrict our interest to the case where the original time series
possesses distinct components whose frequency contents are in ratio
outside the range [0.5, 2].

The role of a masking signal in EMD can be interpreted in two
ways. First, incorporating a masking signal (usually with a harmonic
higher than the highest frequency in the original time series) into the
original time series introduces randomness in the EMD algorithm.
The high-frequency content in the masking signal then acts as noise
during decomposition (see, for example, Flandrin et al. [22]), and
provides robustness to the EMD to yield a set of proper IMFs.
Second, tuning amasking signal to the highest-frequency component
of the original time series amplifies this highest-frequency com-
ponent (in particular, when it is weak and buried compared with the
other harmonics) so that EMD analysis may yield clear separation of
the highest-frequency component and, sequentially, of the lower
components. In all cases, the primary goal of applying a masking
signal is the clear identification and decomposition of the highest-
frequency component of the time series.

A masking signal frequently takes the form of a simple harmonic
function; that is, we often employ a masking signal of the form

xmask�t� � �a sin �!t� �b cos �!t. The choice of the amplitudes, �a, �b,
and frequency, �!, is purely empirical and nonunique. One can also
refer to the criteria suggested in Senroy et al. [26], and Deering and
Kaiser [27].

As a demonstration, AEMD is performed on the time series
depicted in Fig. 4a. From the waveform of the signal, we may infer
from the beginning that the time series x�t� � cos�2�f1t��
0:3 cos�2�f2t�, wheref1 � 1 andf2 � 3 �Hz�, in Fig. 4a satisfies all
conditions for an IMF (see Sec. III.A). Thus, the SEMD will never
separate the hidden high-frequency component of the signal, which
manifests itself in the form of inflection points at quarter- or three-
quarter-period intervals. Figure 4b presents the two IMFs extracted

with the help of a masking signal xmask�t� � 0:5xmax cos�2� �ft�,
�f� f1 � f2. The choice of themasking frequency �f is due to Senroy
et al. [26], and the cosine function is selected to produce an in-phase
initial condition between x�t� and xmask�t�. Using a mirror-image
signal provides a set of two IMFs with clear separation of com-
ponents (index of orthogonality� 1:65 
 10�3) and no end effects in
the initial stage of the signal (Fig. 4c).Also, completeness of the basis
of the two IMFs can be verified by comparing x�t� with the
reconstructed signal c1�t� � c2�t�, which is depicted in Fig. 4d. The
normalized mean square error between the envelopes of x�t� and
c1�t� � c2�t� is computed as 4:68 
 10�3%.

A different masking signal xmask�t� � 0:4xmax cos�2� �ft�, �f�
20f1, is considered in Fig. 5 to demonstrate how the masking signal
works in separating different components of the time series in Fig. 4a.
The masking frequency in this case is approximately 7 times higher
than f2, and hence the resulting masking signal acts as noise in the
original time series. The use of the masking signal is described as
follows [27]. First, perform EMD analysis for the signal x�t� �
xmask�t� to yield the IMFs denoted by c�0 �t�, c�2 �t�, and c�1 �t� (left
column of Fig. 5a); then, perform EMD analysis of the signal
x�t� � xmask�t�, yielding the IMFs c�0 �t�, c�2 �t�, and c�1 �t� (right
column of Fig. 5a). Then, compute the means of the respective
IMFs to eliminate the influence of the masking signal in the EMD
results; that is, compute c0�t� � �c�0 �t� � c�0 �t��=2, c1�t� � �c�1 �t��
c�1 �t��=2, and c2�t� � �c�2 �t� � c�2 �t��=2. Apparently, the IMFs c�0 �t�
correspond to the components of the masking signal at frequency
�f� 20f1, which are out of phase to each other; therefore, averaging
these two IMFs results in almost zero mean values over the whole
time span, which implies that the effects of the masking signal are
almost completely eliminated from further analysis (Fig. 5b). The
remaining averaged IMFs c1�t� and c2�t� become the physically
meaningful decompositions with frequency components f1 and f2,
which are the same as those in Fig. 4b.

2942 LEE ETAL.



We also note that to perform EMD analysis of a time series
suspected to contain hidden high-frequency components as in
Fig. 4a, one may (numerically) differentiate with respect to time to
magnify such hidden high-frequency contents (and filter to remove
the additional high-frequency noise induced by the numerical dif-
ferentiation). Thus, for the previous example we obtain _x�t��
�2�f1 sin�2�f1t� � 0:6�f2 sin�2�f2t�, where the amplitude of the
f2-component becomes multiplied by the factor of 2�f2, as depicted
in Fig. 6a. In this case one does not even need to use amasking signal

to separate the two frequency components because the amplitudes of
the respective components become of compatible orders in the
differentiated signal: the component at frequency 2�f1 is equal to
6.282, whereas the amplitude of the component at frequency 0:6�f2
is equal to 5.655. Figure 6b presents the two components of the
previous example with the help of the masking signal xmask�t��
�0:5xmax sin�2� �ft�, where in this case the masking frequency �f�
f2 is tuned to the highest component of the time series. Because the
influence of the masking signal is eliminated when the pair of
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positive and negative IMFs are averaged, the first IMF will recover
the original highest-frequency content of the time series. The
instantaneous frequencies of the resulting two IMFs are depicted in
Fig. 6c, whereas their completeness, i.e., their capacity to reproduce
the original signal by superposition, is demonstrated in Fig. 6d.

IV. Correspondence Between Analytical
and Empirical Slow Flows

Once proper (monocomponent or narrowband) IMFs are obtained
by EMD or AEMD, the Hilbert transformation can be applied to
them. Letu�t� be the original (real) signal. Then, itsHilbert transform
v�t� is defined by the integral

v�t� �H�u�t��≜ PV

�

Z 1
�1

u�s�
t � s ds (12)

where H�
� and PV imply Hilbert transformation and the Cauchy
principal value of the integral, respectively. The inverse Hilbert
transformation is defined by the formula:

u�t� �H�1�v�t��≜ PV

�

Z 1
�1

v�s�
s � t ds (13)

In convolution notation, the Hilbert pair fu�t�; v�t�g can bewritten as

v�t� � u�t� � 1

�t
; u�t� � v�t� � 1

�t
(14)

Note that unlike other transformations the Hilbert transformation
does not change the domain of the signal.

Recalling that the Fourier pair f u�t�; U�!� g is expressed as

U�!� � F �u�t��≜
Z 1
�1
u�t�e�j!tdt

u�t� � F�1�U�!��≜
Z 1
�1
U�!�ej!tdf (15)

where !� 2�f, we can compose the following diagram relating the
Fourier and Hilbert transforms.

u�t� 7!H v�t�
F # # F

U�!� 7!H V�!�
(16)

Noting that the Fourier transform of the kernel of the Hilbert
transform, 1=��t�, is �jsgn�!�, one can derive the relation
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v�t�7!F V�!� � �jsgn�!�U�!� (17)

whereU�!� andV�!� form aHilbert pair, and the spectrum of u�t� is
multiplied by the operator �jsgn�!�. It is interesting to note that the
Hilbert transform can be calculated by the Fourier transform and
inverse Fourier transform:

u�t�7!F U�!�7!H V�!� � �jsgn�!�U�!�7!F
�1
v�t� (18)

It is well known that the complex signal whose imaginary part is
the Hilbert transform of its real part is an analytic signal. A simple
example is the harmonic complex signal,

 �t� � exp�j!t� � cos�!t� � j sin�!t� � cos�!t� � jH�cos�!t��

Moreover, we recall that, by the Cauchy–Riemann theorem, the
function  �z� � u�x; y� � jv�x; y� is called analytic in the domain
D � C, z� x� jy 2 D if and only if the real functions u�x; y� and
v�x; y� are continuously differentiable (i.e., C1).

Consider an analytic signal

 �t� � u�t� � jv�t� � A�t�ej��t� (19)

where the real signals u�t� and v�t� are the Hilbert pair defined in
Eq. (14). Then, u�t� and v�t� can be written in terms of analytic
signals,

u�t� �  �t� �  
��t�

2
; v�t� �  �t� �  

��t�
2j

(20)

where  ��t� � u�t� � jv�t� is the conjugate analytic signal.
Equations (19) and (20) will provide the insight necessary to
explain equivalence between analytical and empirical slow flows.

For the analytic signal (19), the instantaneous amplitude envelope
A�t� and phase ��t� of the complex signal  �t� can be computed by
the expressions

A�t� �
���������������������������
u�t�2 � v�t�2

p
; ��t� � tan�1

v�t�
u�t� (21)

which yield the instantaneous frequency of the signal by differ-
entiation.

!�t� � d�
dt
� d

dt

�
tan�1

v�t�
u�t�

�
� u�t� _v�t� � v�t� _u�t�

u2�t� � v2�t� (22)

Although Eq. (22) defines the instantaneous frequency of a signal
regardless of its bandwidth, it has been observed that the notion of
instantaneous frequency has physical meaning only for narrowband
signals (i.e., high-frequency modulated signals [9]). It is possible,
however, to implement frequency demodulation for wideband
signals such as speech by regarding the instantaneous frequency as
the average of all frequencies that exist at a given instant, and the
instantaneous bandwidth can be considered as the frequency devi-
ation from that average [37].

Extending the fundamentals of an analytic signal, we examine the
analyticity aspects of IMFs [37] to establish correspondence or
equivalence between an (analytical) slow-flow model defined by the
CX-A technique and the dominant (proper) IMFs (i.e., the empirical
slow-flow) resulting from EMD analysis. As mentioned previously,
EMD analysis is an iterative process that decomposes a real signal
xk�t� (which represents the response of the kth DOF of an n-DOF
dynamical system) into a set of IMFs, as expressed by Eq. (8),

xk�t� 	 c�k�1 �t� � c
�k�
2 �t� � 
 
 
 � c

�k�
N �t�; k� 1; 2; . . . ; n (23)

where c�k�m �t�, m� 1; 2; . . . ; N, is the mth component, associated
with frequency !m.

Motivated by the previous discussion of analytic complex signals,

we introduce the following complexification of themth IMF, c�k�m �t�,

 ̂
�m�
k �t� � c

�k�
m �t� � jH�c�k�m �t��≜ Â

�k�
m �t�ej�̂

�k�
m �t� (24)

which by construction is an analytic signal. The instantaneous
envelope and phase of this IMF can then be computed similarly to
Eq. (21),

Â
�k�
m �t� �

������������������������������������������
c�k�m �t�2 �H�c�k�m �t��2

q
; �̂

�k�
m �t� � tan�1

�
H�c�k�m �t��
c�k�m �t�

�

(25)

and its instantaneous frequency, similarly to Eq. (22),

!̂ �k�m �t� �
d

dt
�̂
�k�
m �t� �

c�k�m �t� ddtH�c
�k�
m �t�� � _c�k�m �t�H�c�k�m �t��

c�k�m �t�2 �H�c�k�m �t��2
(26)
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It follows that the analytic signal (24) can be partitioned in terms of
slow and fast components according to the expression

 ̂
�m�
k �t� � Â

�k�
m �t�ej��̂

�k�
m �t��!mt�ej!mt (27)

which is in a form similar to the analytical slow flow of Eq. (5),
although no a priori slow–fast partition of the dynamics was as-
sumed when decomposing the IMF. Recognizing ej!mt as the fast
dynamics of the IMF, we conclude that the remaining partition

Â
�k�
m �t�ej��̂

�k�
m �t��!mt� plays the role of the slow dynamics. Clearly, for

such a slow–fast partition of the IMF to hold it must be satisfied that
the instantaneous amplitude, phase, and frequency of the IMF are
slowly varying compared with the corresponding fast-frequency !m
of the IMF. This is an assumption that will be made throughout this
study, in order for the results of EMD to conform with the following
theoretical developments.

Now, we consider an alternative complexification of themth IMF

c�k�m �t� in the form,

^̂
 
�m�
k �t� � _c�k�m �t� � j!mc�k�m �t�≜

^̂
A
�k�
m �t�ej

^̂
�
�k�
m �t� (28)

which bears similarity to the complexification (5). If the complex

function
^̂
 
�m�
k �t� is analytic, then so is the function j

^̂
 
�m�
k �t��

�!mc�k�m �t� � j _c�k�m �t�. This implies that its imaginary part is the
Hilbert transform of its real part,

_c �k�m �t� � �!mH�c�k�m �t�� (29)

Furthermore, if the condition (29) is satisfied, then there should be an
equivalence between the analytical slow flow defined by Eq. (4) and
the analytical empirical slow flow defined by Eq. (8). This is because
both expressions represent identical analytical decompositions of the
time series in terms of slowly modulated components at distinct fast
frequencies. It follows that the following expressions should hold

x�m�k �t� � c
�k�
m �t� and _x�m�k �t� � _c�k�m �t� (30)

which imply that _c�k�m �t� is identical to the mth IMF of the velocity

signal _x�m�k �t�. Then, Eq. (28) can be rewritten as

^̂
 
�m�
k �t� � _c�k�m �t� � j!mc�k�m �t� � �!mH�c�k�m �t�� � j!mc�k�m �t�

� j!m�c�k�m �t� � jH�c�k�m �t��� � j!m ̂�m�k �t� (31)
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Therefore, the analytic signal  ̂
�m�
k �t� in Eq. (24) and the complex

function
^̂
 
�m�
k �t� [which is also analytic by Eq. (29)] in Eq. (28) are

equivalent, such that

 ̂
�m�
k �t� �

1

j!m

^̂
 
�m�
k �t� �

1

j!m
 �m�k �t� (32)

where  �m�k �t� is derived from a mathematical (or analytical) model

by the (analytic) complexification in Eq. (5), whereas
^̂
 
�m�
k �t� is

obtained by the EMD (or AEMD) of the (experimental or numerical)
measured time series via Eq. (8) and its complexification (28).

Now, we can conclude the correspondence between the analytical
and empirical slow flows by noting that Eq. (32) leads to the
following equivalence of the slow parts resulting from analysis
and EMD,

Â
�k�
m �t�ej��̂

�k�
m �t��!mt� 	 1

j!m
’�m�k �t� (33)
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Fig. 7 Frequency components of the numerical responses during 1:3 transient resonance capture: a) LO displacement; and b) NES displacement.
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from which the analytical slow flow can be expressed in terms of the
empirical slow flow as follows:

’�m�k �t� 	 j!mÂ
�k�
m �t�ej��̂

�k�
m �t��!mt� (34)

The equivalence between the analytical and empirical slow flows
based on the assumption of analyticity of the IMFs can be restated as
follows. From Eqs. (5), (6), and (30), we write

^̂
 
�m�
k �t� � _c�k�m �t� � j!mc�k�m �t�

�  �m�k �t� � ’
�m�
k ���ej!mt

� j’�m�k ���jej�
�m�
k
���ej!mt

� j’�m�k ���jej�!mt��
�m�
k
���� (35)

where the slow-time scale � is introduced to indicate that the complex

variable ’�m�k ��� is a slowly varying component with respect to the
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fast-varying part ej!mt. In this multiscale formulation the slow
temporal variable � is considered to be independent from the fast
temporal variable t [31]. Thus, the slowly varying envelope and

phase, j’�m�k ���j and �
�m�
k ���, are equivalent to the corresponding

quantities, !mÂ
�k�
m �t� and �̂

�k�
m �t� � !mt, in Eq. (34), respectively.

The empirical slow flow can then be expressed in terms of the real

and imaginary parts of  �m�k �t� such that

c�k�m �t� �
1

!m
Im�’�m�k ���ej!mt� �

1

!m
j’�m�k ���j sin�!mt� �

�m�
k ����

_c�k�m �t� � Re�’�m�k ���ej!mt� � j’
�m�
k ���j cos�!mt� �

�m�
k ���� (36)

Recalling that H�cos!t� � sin!t and H�sin!t� � � cos!t, we
derive

H�c�k�m �t�� �
1

!m
H�j’�m�k ���j sin�!mt� �

�m�
k �����

� 1

!m
j’�m�k ���jH�sin�!mt� �

�m�
k �����

� � 1

!m
j’�m�k ���j cos�!mt� �

�m�
k ����

� � 1

!m
j’�m�k ���j cos�!mt� �

�m�
k ���� � �

1

!m
_c�k�m �t� (37)

where Hilbert transformation is carried out only with respect to the
fast time scale. This verifies the condition (29) for the analytic
equivalence between the slow-flow and dominant IMFs. But even
without introducing the slow time scale inEq. (35), one can derive the
analyticity condition (37) by means of the Bedrosian theorem [42]

based on the analyticity of the slow flow ’�m�k �t� with the notation of
the fast time scale retained.

Again, we emphasize that we applied the Hilbert transformation
only with respect to the fast time scale in Eq. (37), ignoring the
slow-time dependence. That is, if a function behaves as a simple
harmonic function, c�t� � Aej!t (A constant with respect to time
variation), then _c�t� � j!Aej!t � j!c�t�. Hilbert transformation of
the harmonic function yields H�c�t�� � �jej!t ��jc�t� so that
Hf�H�c�t��g � �c�t�. This leads to the relations _c�t� � �!H�c�t��
and �c�t� � �!2c�t� ) �c�t� � !2c�t� � 0. This last expression
obviously represents a harmonic oscillator, and can be applied to
proper IMFs. That is, we write

�c �k�m �t� � !2
mc
�k�
m �t� � 0 (38)

which indicates that the assumed slow–fast partition of the IMFs and
the assumption of harmonic dependence with respect to the fast time
scale imply the analyticity condition (29) for these IMFs.
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Finally, the analytic condition for slow flow leads to an interesting
conclusion regarding the instantaneous frequency in Eq. (26).
Evaluate the numerator of the instantaneous frequency of the IMF to
obtain the relation

c�k�m �t�
d

dt
H�c�k�m �t�� � _c�k�m �t�H�c�k�m �t�� � c�k�m �t��!mc�k�m �t��

� f�!mH�c�k�m �t��gH�c�k�m �t�� � !m�c�k�m �t�2 �H�c�k�m �t��2� (39)

This implies that, for a proper IMF, the instantaneous (fast) frequency
calculated by Eq. (26) is !m on average. In other words, the slow
phase becomes a constant on average. We remark that if the slow
amplitude varies significantly in the fast time scale, this relation does
not expect to hold.

The derivations in this section show thatwe can associate theEMD
results to the underlying slow-flow dynamics, a result that provides a
physics-based foundation for EMD. In particular, we showed that if
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the analyticity condition (29) is satisfied then proper IMFs can be
associated with components of the slow dynamics of corresponding
frequencies. In summary, by associating the EMD results to the slow-
flow dynamics of a dynamical system we demonstrate that the IMFs
provide significant physical insight to the dynamics, a feature that
will be employed by the authors in a companion paper for nonlinear
system identification and reduced-order modeling [30]. In the
following section we provide some demonstrative examples that
highlight the correspondence between EMD results and slow flows.

V. Examples of Applications

In this section, we demonstrate the correspondence between the
analytical and empirical slow flows established in Sec. IV based on
the analyticity of IMFs. The dynamical processes considered are
1) the dynamics of 1:3 transient resonance capture in a coupled oscil-
lator [35]; and 2) the triggering mechanism of aeroelastic instability
in a rigid wing in flow [36]. For both systems, the analytical slow-
flowmodels are already developed in previous works, and so a direct
study of their equivalence to IMFs derived from AEMD is possible.

A. Dynamics of 1:3 Transient Resonance Capture in a Coupled

Oscillator

We consider first a linear oscillator (LO) coupled to a nonlinear
oscillator by means of an essential stiffness nonlinearity of the third
degree. In previous works the nonlinear oscillator was termed a
nonlinear energy sink (NES) due to its capacity to passively absorb
and locally dissipate energy from the LO over broad frequency
ranges [32]. The equations of motion of this system are

�y� !2
0y� ��1 _y� ��2� _y � _v� � C�y � v�3 � 0

� �v� ��2� _v � _y� � C�v � y�3 � 0 (40)

where y and v are the displacements of the LO andNES, respectively;
!0 is the linearized natural frequency of theLO; � themass ratio of the
NES to the LO; C the essentially nonlinear stiffness coefficient; and
�1;2 the damping coefficients. In the application studied we consider
the parameters !0 � 1, C� 1, �� 0:05, and �1;2 � 0:03, so that
��1;2 � 0:0015. The initial conditions _y�0� � �0:059443193 and

_v�0� � 0:014995493 with zero initial displacements initiate
transient responses corresponding to 1:3 transient resonance capture
between the LO and the NES; i.e., transient nonlinear resonance
between the linear and nonlinear oscillators, with the linear oscillator
oscillating three times faster than the nonlinear one. Strong energy
exchanges between the two oscillators occur during this resonance
capture [34,35].

Figure 7 depicts the corresponding responses in the time and
frequency domains. From these responses, we infer that the dominant
frequencies for the LO and NES are !2 � !0 (high-frequency
component, denoted by HF) and !1 � !0=3 (low-frequency
component, denoted by LF), respectively. Kerschen et al. [35]
showed that during the engagement of the 1:3 transient resonance
capture (approximately until t� 650), the LO and NES behave as a
system of two uncoupled harmonic oscillators with fundamental
frequencies equal to !0 and !0=3, respectively, which is evidenced
by the constant time-frequency behavior in the wavelet transform
spectra. In reality, the two oscillators possess both !1 and !2

harmonic components due to nonlinear modal interactions.
To derive an analytical slow-flow model for the 1:3 transient

resonance capture, we assume that each of the two responses of the
system can be decomposed into two frequency components,

x1�t�≜ y�t� � y�1��t� � y�2��t�

x2�t�≜ v�t� � v�1��t� � v�2��t� (41)

where subscripts denote the DOF, and superscripts refer to the
dependence on the frequency components, !1 and !2, respectively.
According to the CX-A technique we introduce the following
complex variables (i.e., complexify the real variables)

 �1�1 �t� � _y�1��t� � j!1y
�1��t� � ’�1�1 �t�ej!1t

 �2�1 �t� � _y�2��t� � j!2y
�2��t� � ’�2�1 �t�ej!2t

 �1�2 �t� � _v�1��t� � j!1v
�1��t� � ’�1�2 �t�ej!1t

 �2�2 �t� � _v�2��t� � j!2v
�2��t� � ’�2�2 �t�ej!2t (42)

so the real displacements and velocities can be expressed in terms of
the new complex variables,
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1

 

 

 

 

 

 

 

 

Fig. 11 Comparisons of the IMFs of the velocity time series with the derivatives of the IMFs derived from the displacement time series.

LEE ETAL. 2951



y�t� �  
�1�
1 �t� �  

�1��
1 �t�

2j!1

�  
�2�
1 �t� �  

�2��
1 �t�

2j!2

v�t� �  
�1�
2 �t� �  

�1��
2 �t�

2j!1

�  
�2�
2 �t� �  

�2��
2 �t�

2j!2

_y�t� �  
�1�
1 �t� �  

�1��
1 �t�

2j
�  

�2�
1 �t� �  

�2��
1 �t�

2j

_v�t� �  
�1�
2 �t� �  

�1��
2 �t�

2j
�  

�2�
2 �t� �  

�2��
2 �t�

2j
(43)

and the accelerations can be expressed as

�y�t� � _ �1�1 �t� �
j!1

2
� �1�1 �t� �  

�1��
1 �t�� � _ �2�1 �t�

� j!2

2
� �2�1 �t� �  

�2��
1 �t��

�v�t� � _ �1�2 �t� �
j!1

2
� �1�2 �t� �  

�1��
2 �t�� � _ �2�2 �t�

� j!2

2
� �2�2 �t� �  

�2��
2 �t�� (44)

Substituting into Eq. (40) and averaging out the fast terms other than
ej!1t and ej!2t, we obtain four complex-valued slow-flow equations
in the form,

_��t� � F���t�� 2 C4 (45)

where ��t� � f’�1�1 �t�; ’�1�2 �t�; ’�2�1 �t�; ’�2�2 �t� gT and the
details of F���t�� can be found in Kerschen et al. [35]. Denoted by
~y�t� and ~v�t�, respectively, the approximate motions based on
Eq. (45), in Fig. 8a we compare them to the corresponding exact
responses resulting from numerical solution of Eq. (40). The approx-
imation exhibits a reasonably good match until escape from the 1:3
transient resonance capture occurs around t� 700.

Now, we perform the AEMD analysis of the time series to derive
the empirical slow-flow approximation by decomposing the time
series into dominant components (IMFs). We express the resulting
decomposition as

x1�t�≜ y�t� 	 c�1�1 �t� � c
�1�
2 �t�

x2�t�≜ v�t� 	 c�2�1 �t� � c
�2�
2 �t� (46)

where superscripts and subscripts of the IMFs indicate the DOFs and
frequency components, respectively; and 0:4vmax cos!0twas used in
performing theAEMDanalysis on theNES response. Note that these
notations are the opposite of those for the analytical slow-flowmodel
(cf. Sec. IV); that is, the superscripts and subscripts imply frequency
components and the DOFs in Eq. (41).

The approximate responses obtained by summing the IMFs are
compared with the corresponding exact time series in Fig. 8b. As

−0.05

0

0.05

H
F

 L
O

 (
ω

2)
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addressed in Sec. III, the IMF-based approximations exhibit a better
match with the original dynamics by virtue of the ad hoc
decomposition method. The analytical slow flow deviates from the
original time series as soon as the dynamics exhibits escape from
resonance (i.e., the analytical slow-flow model derived from aver-
aging loses its validity when escape from resonance occurs). On the
other hand, the EMD method tends to separate frequency com-
ponents between the individual IMFs as long as the corresponding
frequency ratios satisfy the narrowband conditions.

Figure 9 compares the components of the analytical and empirical
decompositions. Except for the LF component of the LO, the

analytical slow-flow model matches well with the IMFs. The
deviations in the LF LO components indicate that this component
does not make a significant contribution to the nonlinear modal
interactions due to 1:3 transient resonance capture; and also that
either the analytical or the empirical decomposition is spurious.
While the IMF (although of small amplitude) possesses frequency
content near !1 � !0=3 (cf. the bottom wavelet transform spectrum
plot in Fig. 9b), the analytical slow flow contains high-frequency
terms.We conjecture that this happens becausewe employed optimal
but nonunique initial conditions to solve the slow-flow model (45)
according to the formulation developed in Kerschen et al. [35].
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Therefore, this analytical LFLOcomponent can be regarded as being
spurious and nonphysical.

In Fig. 10awe compare the exact velocity time series, _y�t� and _v�t�
from Eq. (40), with their approximate solutions given by Eq. (43),
which demonstrates again the validity of the analytical slow-flow
model. We note that the HF component (i.e., at !2 � !0) of the NES
becomes amplified, appearing prominent during the initial transients,
in particular. In addition, the AEMD was applied directly to the
velocity time series and the resulting IMFs are compared with the
components derived from the CX-A technique (Fig. 10b). Similar to
the case of the displacements, all velocity components of the ana-
lytical and empirical slowflows show compatibility except for the LF
LO components.

Based on the previous results, fromhere onwe consider theHFLO
and the HF and LFNES components as the dominant slow flows that
govern 1:3 transient resonance capture in the coupled oscillator (40).
Before we further examine the equivalence between the analytical
and empirical slow flows, we examine the analyticity condition by
the dominant IMFs. To check the relation (30) that results from the
analyticity condition (29), the IMFs for the displacements (that is,

c�1�2 �t� and c
�2�
1;2�t�) are numerically differentiated, and the resulting

high-frequency noise is eliminated by applying a low-pass filter with
a cutoff frequency of 0:7!2. Such noisy signals are produced by
numerical differentiation and depend on the step size of the time
series. When compared with the IMFs obtained directly from the
velocities (cf. Fig. 11), the numerically differentiated IMFs from
the displacement data exhibit a reasonably good match. This
investigation demonstrates one of the analytic properties for well-
decomposed IMFs, implying that the measurement of displacements
in the time domain can be used for establishing a slow-flowmodel in
terms of both displacement and velocity decompositions.

Other properties of analyticity of the IMFs are examined in
Fig. 12, checking the analyticity conditions (29) and (38). Com-

parisons of the quantities _c�k�m �t� and �!mH�c�k�m �t��, and of �c�k�m �t�
and �!2

mc
�k�
m �t�, show reasonable compatibility. Here, direct differ-

entiation of the dominant IMFs from the displacement datawas used,
although the IMFs from the velocities and accelerations could be
used as well. Some nonnegligible residues are observed for the HF
NES component; however, it is suspected that they appear due to
errors introduced by the numerical differentiations that survive even
after application of low-pass filtering (cf. the noisy content in the

residues). These residues can be neglected, because such discre-
pancies may exist even if two time series possess slight phase dif-
ferences between them or if they are not pointwise coincident.

Another interesting observation from the residues of the HF LO
and LF NES components is that the dynamics of 1:3 transient
resonance capture behaves as if the two oscillators (the LO andNES)
are uncoupled (an observation alsomade inKerschen et al. [35]). The
first and third plots in Fig. 12d demonstrate that this uncoupling

approximately holds because �c�1�2 �t� � !2
2c
�1�
2 �t� 	 0 and �c�2�1 �t��

!2
1c
�2�
1 �t� 	 0, respectively. Noting that c�1�2 �t� and c

�2�
1 �t� are the

dominant IMFs for the nonlinear modal interactions through 1:3
transient resonance capture, we deduce in turn that �y�t� � !2

0y�t� 	
0 and �v�t� � �!0=3�2v�t� 	 0, a result that fully confirms the
findings in Kerschen et al. [35].

Now we examine the equivalence between the analytical slow-
flowmodel and the dominant IMFs. Recalling Eq. (34), we note that,
by virtue of the analyticity of proper IMFs, the slow flow can be
expressed approximately as

’�m�k �t� 	 j!mÂ
�k�
m �t�ej�

�k�
m �t� (47)

where ’�m�k �t� can be obtained from the analytical slow-flow model,

and Â
�k�
m �t� and ��k�m �t� � �̂

�k�
m �t� � !mt are computed by extracting

the slow components of the dominant IMFs; the indices m and k
denote the frequency component and of the DOF, respectively.

Figure 13 compares the slowly varying envelopes derived from the
analytical slow flow and the slow components of dominant IMFs;

that is, we compare the amplitudes j’�m�k �t�j and !mÂ
�k�
m �t�, where

Â
�k�
m �t� is evaluated from Eq. (25). Again, except for the LF LO

component, the slow envelopes of the analytical slow flow and the
dominant IMFs agree well. Moreover, the analytical and empirical

slow flows (that is, ’�m�k �t� and j!mÂ
�k�
m �t�ej�

�k�
m �t�) are compared

directly in the complex plane to check as well the validity of the slow
phases of corresponding components of the IMFs (Fig. 14). To

perform this comparison, we compute the phases �̂
�k�
m �t� of the

dominant IMFs by Eq. (25) and then subtract from them the respec-

tive fast phases !mt to derive the slowly varying phases ��k�m �t�; in
addition, low-pass filters with cutoff frequencies equal to 0:7!mwere
applied to the results. The comparison in the complex plane clearly
demonstrates the close correspondence between the analytical slow
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flow and the slow components of the dominant IMFs, thus validating
the previous theoretical formulation and providing a physical inter-
pretation of the EMD results.

Finally, we explore the equivalence between the analytical and
empirical slow-flow models by studying in more detail the 1:3
transient resonance capture in the transient dynamics in the system of
coupled oscillators (40). Considering first the analytical slow flow
derived by the CX-A method by expressing Eq. (45) in polar form,
we can obtain a set of real-valued modulation equations in terms of

slow amplitudes and slow phase differences (see Kerschen et al. [35]
for details). Similarly, one can consider an analogous expression for
the slow flow derived from the dominant IMFs, which can be
mathematically written in the form

_a� f�a; ��; _�� g�a; �� (48)

where a� fÂ�1�2 �t�; Â
�2�
1 �t�; Â

�2�
2 �t�gT and�� f�11; �22; �21gT . Here,

the phase difference �ij is defined only for the nontimelike (i.e.,
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nearly constant with respect to fast time scale in average) phase
variables, because timelike (i.e., monotonic dependence on time on
average) phases can always be averaged out of the dynamics. Hence,

we define the IMF-based slow phase differences as �11 ≜ ��1�1 � �
�2�
1 ,

�22 ≜ ��1�2 � �
�2�
2 , and �21 ≜ ��1�2 � 3��2�1 .

The plots of the slow amplitudes _a were already presented in

Fig. 13, and the IMF-based slow phases ��k�m �t� � �̂�k�m �t� � !mt are

depicted in Fig. 15.Wenote that the slopes for the slowphases appear

almost constant on average (i.e., _�
�k�
m �t� 	 �!m) with respect to time

while the two oscillators are engaged in 1:3 transient resonance

capture (i.e., until t	 650). Recall fromSec. IV that the computation

of the instantaneous frequencies yields the dominant frequency

values !m for proper IMFs, which implies that the slow phases are

constant on averagewith respect to the fast time scale.We proved that
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this relation does not hold if the slow amplitudes are no longer slow

with respect to the time scales of the respective dominant (fast)

frequencies of the responses; that is, when the slow amplitude

variables exhibit timelike behavior.

The phase differences �ij, i, j� 1, 2 are depicted also in Fig. 15,

from which we note that �12 ≜ 3��1�1 � �
�2�
2 is a timelike variable,

which explains why it should not be included in (48) (because it can
be averaged out of the dynamics and does not contribute in the 1:3
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transient resonance capture). On the other hand, the other phase
differences exhibit nontimelike behaviors until t	 650, evidence of
the engagement of the corresponding modes in 1:3 transient
resonance capture. Finally, the timelike behaviors of the slow phase
differences after t	 650 indicate escape from resonance capture. All
these EMD-based observations were theoretically investigated in
Kerschen et al. [35], and so these results provide direct numerical
confirmation of the analytical results reported in that work.

B. Triggering Mechanism of Aeroelastic Instability

As a second application, we demonstrate the equivalence of the
analytical slow flow and EMD for the triggering mechanism of limit
cycle oscillations (LCOs) of a rigid wing in flow studied in Lee et al.
[36]. The nondimensionalized aeroelastic equations ofmotion of this
system are written as,

�y� x� ��� �CL;��_y��2y� 	yy3 � �CL;��2�� 0

r2� ��� x� �y � �
CL;��_y� �r2� � �
CL;��2��� 	��3 � 0 (49)

where y and � are heave and pitch responses of the wing,
respectively; dots denote differentiation with respect to nondimen-
sional time; and all the other system parameters are as given in Lee
et al. [36]. Note that, although all quantities in the this aeroelastic
model are nondimensional, the units for time and frequency will be

assigned as s and Hz (or rad=s), respectively, for the purpose of easy
interpretation.

Typical LCO formation for this system is depicted in Fig. 16, for
zero initial conditions except the heave displacement y�0� � 0:001,
at reduced velocity �� 0:95>�Flutter � 0:87. Fourier analysis
shows that the heave mode contains two dominant frequencies at
!� � 1 and 3!� �rad=s�, and that the pitch mode possesses a single
dominant frequency at !�. Referring to Fig. 16, we note that the
wavelet analysis provides the temporal evolutions of these domi-
nant harmonics. The heave mode, initially excited at its uncoupled
linear natural frequency !y ��� 0:5, exhibits transitions to !�
and then to 3!�, and the pitch mode remains near its uncoupled
linearized natural frequency !� throughout the formation of the
LCO.

The triggering mechanism for this type of aeroelastic instability
consists of three stages [36]: initial excitation by theflowof the heave
mode through which 1:1 transient resonance capture triggers the
pitch mode; escape from the 1:1 transient resonance capture; and
final transition to 3:1 permanent resonance capture, at which point
the LCO is fully developed. Numerical and analytical investigations
of LCO triggering and formation have been carried out in Lee et al.
[36], and herewe focus on the equivalence of the analytical slow flow
to the dominant IMFs obtained from empirical decomposition.

First, we review the derivation of the analytical slow flow per-
formed inLee et al. [36]. From the time-frequency analysis in Fig. 16,
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we expect that at least three fast frequencies �!y; !�; 3!� � are
required for an accurate slow-flow model. Using the notations
introduced in Sec. II, we assume that the heave and pitch modes can
be decomposed as

x1�t�≜ y�t� � y�0��t� � y�1��t� � y�2��t�;

x2�t�≜ ��t� � ��0��t� � ��1��t� � ��2��t�
(50)

where superscript and subscript conventions were defined in the
previous sections. The superscripts for the decomposition indicate
the components associated with !0, !1, and !2, respectively, where
!0 � !y ��� 0:5, !1 � !� � 1, and !2 � 3!� �rad=s�. The
aforementioned three frequency components are referred to as low-
frequency �LF; !0�, middle-frequency �MF; !1�, and high-frequency
�HF; !2� components, respectively [36].

Introducing the six complex variables,

 �0�1 �t� � _y�0��t� � j!0y
�0��t� � ’�0�1 �t�ej!0t

 �0�2 �t� � _��0��t� � j!0�
�0��t� � ’�0�2 �t�ej!0t

 �1�1 �t� � _y�1��t� � j!1y
�1��t� � ’�1�1 �t�ej!1t

 �1�2 �t� � _��1��t� � j!1�
�1��t� � ’�1�2 �t�ej!1t

 �2�1 �t� � _y�2��t� � j!2y
�2��t� � ’�2�1 �t�ej!2t

 �2�2 �t� � _��2��t� � j!2�
�2��t� � ’�2�2 �t�ej!2t (51)

the original variables can be expressed in terms of them. Substituting
into Eq. (49) and averaging out fast terms other than those
corresponding to the three fast oscillations, ej!0t, ej!1t, and ej!2t, we
finally obtain a set of six slow-flow equations, which constitute the
slowflows describing aeroelastic instability triggering and formation
in this system.

_��t� � F���t�� 2 C6 (52)

where ��t� � f ’�0�1 �t�; ’�0�2 �t�; ’�1�1 �t�; ’�1�2 �t�; ’�2�1 �t�;
’�2�2 �t�gT is the vector of complex amplitudes, and the details of the
complex-valued function F���t�� can be found in Lee et al. [36].

Using optimal initial conditions in the sense discussed in Vakakis
et al. [32] for the modulation Eqs. (52), the approximate solutions

~y�t� and ~� are compared with the original time series y�t� and ��t�, in
Fig. 17a.We note that except for the initial transients the solutions for
the analytical slow-flowmodel approximatewell the exact numerical
solutions.

Performing AEMD analysis with 0:2ymax cos 3!�t as a masking
signal only to the heave mode response, we obtain two dominant
IMFs (for the MF and HF components) for the heave mode, and a
single IMF (for the MF component) for the pitch mode. Express the
resulting empirical decomposition as

x1�t�≜ y�t� 	 c�1�1 �t� � c
�1�
2 �t�; x2�t�≜ ��t� 	 c�2�1 �t� (53)

where c�1�0 �t� (the LF heave), c
�2�
0 �t� and c

�2�
2 �t� (the LF and HF pitch)

are omitted in Eq. (53) as spurious. This result is consistent with the
Fourier and wavelet transform results depicted in Fig. 16. These
empirical decompositions are compared with the original time series
in Fig. 17b, and are found to approximate the original time series
better than the analytical slow-flowmodel. Note that in this case both
the analytical and empirical slow-flow models are valid over the
entire time span, whereas the analytical slow flow in Sec. V.A
was valid only until escape from 1:3 transient resonance capture
occurred.

The dominant IMFs for the aeroelastic modes are compared with
the corresponding analytical approximations in Fig. 18. In general,
the slow components of the dominant IMFs are reasonably
compatible with the results of the analytical slow flow, except for
some discrepancies in the initial stage of the responses. We note that
the dominant IMFs carry more accurate and physically meaningful
information by virtue of their numerical construction, comparedwith
the analytical slow-flow results that were derived under certain
assumptions, the most important of which were the slow–fast
partition of the dynamics and the composition of the dynamics by
distinct harmonic components. As noted in Lee et al. [36], one of the
reasons the discrepancies between the EMD and analytical slow
flow occur is that the slow-flow model (52) possesses higher
dimensionality than the original dynamical system (in fact, the
dimensionality of the slow-flow model is dictated by the number of
dominant harmonics in the transient dynamics). As a result, the initial
conditions for (52) were obtained as solutions of an optimization
problem [32] and are not unique. Also, we remark that the
comparisons in Figs. 17 and 18 suggest the possibility of deriving an
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analytical slow-flowmodel with the two dominant frequencies of the
MF andHF components (i.e., a two-frequency averaged system), but
this will not be further discussed in this paper.

In Fig. 19 the IMFs for the displacements are numerically
differentiated and compared with those directly obtained from
velocity time series, which demonstrates the analytic equivalence
(30) between the analytical slowflow and the slow components of the
dominant IMFs. There exist, however, discrepancies in the HF heave
component around t 2 �150; 200�, where the escape from 1:1
transient resonance capture and transition to 3:1 permanent reso-
nance capture occurs.

Additional analytic properties of the IMFs are examined in Fig. 20
based on the analyticity relations (29) and (38). From these results we

note that the residues in _c�k�m � !mH�c�k�m � and �c�k�m � !2
mc
�k�
m appear

rather significant in this comparison. These residues can still be
neglected (i.e., the assumption of fast harmonic dynamics in Eq. (38)
is still valid), because in this case they are due to differences in the
frequencies used for the slow-flow model; that is, whereas the
frequencies for the MF and HF components in the analytical slow-
flow model were !1 � 1 and !2 � 3 �rad=s�, the dominant
frequencies in Fig. 16 are 0:1350 
 2�� 0:848 and 0:4533 
 2��
2:848 �rad=s� for the heave mode, and 0:1516 
 2��
0:953 �rad=s� for the pitch mode. These differences can be further
amplified during differentiation.

Now we examine the equivalence between the (analytical) slow-
flow model and the slow components of the dominant IMFs; that is,
wewish to test the equivalence between the analytical slow-flow and
the numerical AEMD results. This is determined by the relation

’�m�k �t� 	 j!mÂ
�k�
m �t�ej�

�k�
m �t� in Eq. (47), where ’�m�k �t� is obtained

from the analytical slow-flow model, and the slowly varying

amplitude and phase, Â
�k�
m �t� and ��k�m �t�, are computed directly from

the dominant IMFs. Figures 21 and 22 compare the slowly varying

envelopes j’�m�k �t�j and !mÂ
�k�
m �t�, and the respective slow flows in

the complex plane.Weverify that, except for a slight phase deviation,
the analytical slow flow correlates closely with the dominant IMFs
(i.e., the empirical slow flow).

Finally, the slow phases ��k�m �t� derived from the IMFs are
presented in the upper plot of Fig. 23. Unlike the two-DOF system of
coupled oscillators considered in Sec. V.A, the slopes of all the slow-
phase variables exhibit clear linearity. The differences between the
slow phases exhibit nontimelike behaviors in the regimes of
nonlinear modal interactions that are due to 1:1 transient resonance

capture (i.e., the phase difference ��1�1 � �
�2�
1 ) or to 3:1 permanent

resonance capture (i.e., the phase difference ��1�2 � 3��2�1 ) as depicted
in the lower plot of Fig. 23. Moreover, these observations are
consistent with the analytical findings reported in Lee et al. [36].

VI. Conclusions

We have provided a physics-based interpretation of proper IMFs
derived by EMD in terms of slow flows governing the dynamics of
oscillatory time series. By proper IMFs we mean those IMFs that
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satisfy certain narrowband restrictions and near-analyticity condi-
tions. To study the derivation of proper IMFs, we proposed an
enhancement of the EMD procedure through the use of masking
signals, leading to an advancedEMD (AEMD) procedure. Key to our
discussion of equivalence between slow-flow dynamics and IMFs
was a discussion of the issue of analyticity of the derived IMFs,
which implies equivalence of the EMD decomposition and a similar
decomposition derived by the analytical CX-A method. Decom-
position of an IMF in terms of slow and fast components and
harmonic dependence with respect to the fast time scale implies
analyticity of that IMF. As shown in the examples considered in this
work, in practical applications such analyticity conditions are only
approximately satisfied. Nevertheless, the outlined formulations
provide a theoretical framework for EMD, which previously was
considered to be entirely ad hoc, lacking any theoretical basis.
Indeed, as shown in this work, proper IMFs can be interpreted as
being the responses of the slow-flow dynamics of an oscillatory
process. This paves the way for employing EMD as the basis for the
development of a nonlinear, nonparametric system identification and
reduced-order modeling technique that will 1) be based on direct
analysis of measured time series data, 2) be capable of analyzing the
strongly nonlinear, complex dynamics of multicomponent systems,
and 3) hold promise to be as utilitarian as the well-established
experimental modal analysis is for linear systems. As such, the

proposed methodology will be applicable to a broad class of time-
variant or time-invariant, linear or nonlinear, and smooth or
nonsmooth dynamical systems. The development of this method is
the focus of another paper [30].

Appendix: Open Issues: Limitations of the Empirical
Mode Decomposition Method

As has been addressed by many researchers [10,21–25], the most
serious limitation of the EMDmethod is the difficulty separating the
components that contain closely spaced modes. To demonstrate this,
we regenerate some plots in Deering and Kaiser [27].

The standard EMD is applied to a signal x�t� � A1 sin�2�f1t��
A2 sin�2�f2t�, where A1 � A2 � 1, f1 � 1 Hz, and f2 varies from
0.1 to 3 Hz. Nominally, the resulting IMFs should be c1�t� �
A1 sin�2�f1t� (c1�t� � A2 sin�2�f2t�) and c2�t� � A2 sin�2�f2t�
(c2�t� � A1 sin�2�f1t�) when f1 < f2 (f1 > f2). The computations
in Deering and Kaiser [27] used the central difference scheme for the
approximation to the time derivatives. The first two dominant
frequency components are extracted by means of the standard EMD,

followed by the computation of the instantaneous frequencies, f̂1 and

f̂2, and the (mean) amplitudes, Â1 and Â2, with maximum and
minimum variations at a time instant away from the end-effect zones.
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Fig. A1 Test of EMD resolution for the signal A1 sin�2�f1t� � A2 sin�2�f2t�, where A1 � A2 � 1, f1 � 1 �Hz�, and f2 varies from 0.1 to 3 Hz: a–b)

amplitudes and frequencies of IMFs, respectively; (c) orthogonality index with respect to the frequency ratio f2=f1; solid (dotted) lines implymean values

(maximum and minimum variations); hatted quantities are computed from the corresponding IMFs.
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FigureA1a depicts the amplitudes Â1 and Â2 of these two IMFs. If the

decompositions were ideal, Â1 (Â2) should be the same as A1 (A2).
However, there exist large fluctuations in the amplitudes when the
frequency ratio f2=f1 is in the range [0.5,2], which is an indication of
the occurrence of beating phenomena (or amplitude-modulated
signals, as denoted by Ibeat). In addition, close to frequency ratio 1 the
EMD detects only a single IMF (denoted by Is). Away from the
interval Ibeat, the amplitudes of the derived IMFs match reasonably
well. The corresponding instantaneous frequencies are computed in
Fig. A1b, where we note that the two frequency components are
clearly separated in the interval away from Ibeat. Interestingly, the
orthogonality of the two harmonics becomes worse in the interval
Ibeat (Fig. A1c), except near Is where only the single IMF is com-
puted (exhibiting modulations) corresponding to zero index of
orthogonality.

Deering and Kaiser [27] claimed that a masking signal can
improve this deficiency in frequency resolution, which should be
useful for intermittency (ormodemixing). Also, supplementary tools
such as application of an adaptive bandpass filter [24], the wavelet
packet transform [23], masking signals based on the fast Fourier
transform [21], and ensemble EMD [25] can contribute toward the
decomposition of closely spaced modes. However, there seems to
remain a limitation in decomposing beating signals using EMD.
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